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Abstract

Hexahydrocannabinol (HHC), hexahydrocannabiphorol (HHCP) and their acetates,
HHC-O and HHCP-O, respectively, are emerging in Europe as alternatives to tetrahy-
drocannabinol (THC). This study aimed to elucidate the metabolic pathways of the
semi-synthetic cannabinoids HHC, HHCP, HHC-O and HHCP-O from incubation
with human hepatocytes. The metabolites of HHC were also identified in authentic
urine samples. HHC, HHCP, HHC-O and HHCP-O were incubated with primary
human hepatocytes for 1, 3 and 5 h. Authentic urine samples from cases screened
positive for cannabis in blood using ELISA but confirmed negative were analysed
both non-hydrolysed and hydrolysed for HHC metabolites. Potential metabolites
were identified using ultra-high performance liquid chromatography (UHPLC)
coupled to a quadrupole time-of-flight mass spectrometer (QToF-MS). HHC and
HHCP were primarily metabolised through monohydroxylation (monoOH), followed
by oxidation to a carboxylic acid metabolite. HHC-O and HHCP-O were rapidly
metabolised to HHC and HHCP, respectively. In authentic urine samples, 18 different
metabolites were identified, and 99.3% of hydroxylated metabolites were glucuroni-
dated. 11-OH-HHC, 5’OH-HHC and another metabolite with a monoOH on the side
chain were the only metabolites present in all 16 urine samples. The metabolism of
HHC and HHCP were similar, although the longer alkyl side chain of HHCP (heptyl)
led to greater hydroxylation on the side chain than HHC (pentyl). The use of HHC
and HHCP can be differentiated from the use of THC and other phytocannabinoids,
but the use of the acetate analogues may not be differentiable from their non-

acetate analogues.
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1 | INTRODUCTION

Hexahydrocannabinol (HHC), hexahydrocannabiphorol (HHCP) and
their corresponding acetates, HHC-O and HHCP-O, respectively (see
Figure 1 for chemical structures), are emerging as analogues to tetra-
hydrocannabinol (THC) and are marketed as new cannabis alterna-
tives. These compounds have been sold in a variety of forms, for
example, gummies, bubble gums, vapes or crude material.! HHC was
first identified in Europe in May 20222 and has now been identified in
a qualified majority of the EU Member States.! HHC-O has also
emerged on the illicit market in Europe as an alternative to HHC with
the first seizures reported in August 2022.2 HHCP was discovered in
November 2022,% and although no detections have been confirmed
to date, HHCP-O has been reported to be available for sale on the
illicit market.®

Chemically, HHC and its analogues are categorised
as tricyclic terpenoid derivatives with a benzopyran ring
(or hexahydrobenzochromenes). Although HHC and HHCP are
found in small amounts in Cannabis sativa,®’ the HHC and HHCP
detected on the market are synthesised from cannabidiol (CBD) and
A°-tetrahydrocannabiphorol (THCP), respectively; therefore, they
are classed as semi-synthetic cannabinoids.®2? The synthetic route of
HHC-O and HHCP-O has not yet been reported but is likely
synthesised using a similar method used for the synthesis of THC
acetates.!

HHC has three stereocentres and eight possible stereoisomers®;
however, it is typically only found as a mixture of two epimers, (9R)
and (95).8 In HHC- and HHC-O-containing products, the (9R) epimer
was found to be about twice as abundant as the (95).8** The (9R) epi-
mer has also been found to be about twice as abundant as the (95) in
plasma and serum samples.'? Although there is no pharmacodynamic
activity data available for HHCP, HHC-O or HHCP-O, in vivo and
in vitro studies of (9R)- and (9S)-HHC found both epimers were partial

agonists of the human cannabinoid 1 and 2 (CB; and CB,) receptors.

However, (9R)-HHC had much stronger binding affinity, potency and

cannabimimetic effects,®13~1> demonstrating that the intensity of bio-
logical effects can vary based on the epimeric mixtures, which is likely
also true for HHC-O.

There is also limited information available on the pharmacokinet-
ics and metabolism of HHC in humans and animals. Harvey and
Brown (1991) examined the in vitro metabolism of (9R)-HHC using
GC-MS in hepatic/liver microsomal preparations from five mamma-
lian species. This study found only hydroxylated metabolites, where
hydroxylation at the 11 position (11-OH-HHC) and 8 position
(8-OH-HHC) were dominant. However, hydroxylation at all five posi-
tions on the n-pentyl side chain and the 4 carbon position on the
aromatic ring was also found.’® In a recent study reporting metabo-
lite identification in a human urine sample after ingestion of 20 mg
HHC, many of the identified metabolites were glucuronidated and
the tentatively identified 4OH-HHC was found to be the major
metabolite, followed by 11-OH-HHC and 8-OH-HHC.'®> Another
study found (9R)-11-COOH-HHC to be the major metabolite in two
urine samples after inhalation of 25 mg HHC, followed by (9S)-
11-COOH-HHC, (9R)-11-OH-HHC and 9a-OH-HHC.” Another
study found 11-OH-HHC to be the major hydroxylated metabolite in
a human blood sample and following pooled human liver S9 fraction
incubations. No glucuronidated metabolites or 8-OH-HHC were
found, but a carboxy metabolite was found in the human blood sam-
ple.r® Although HHC-O and HHCP-O are believed to go through
rapid metabolism and conversion to HHC and HHCP, respectively,
in vivo, as seen for other esters, this metabolism has not yet been
shown.

This study aimed to identify the main metabolites of HHC, HHCP
and their corresponding acetates following incubation with human
hepatocytes to get a more complete understanding of the
human in vitro metabolism of these emerging semi-synthetic cannabi-
noids. In addition, the metabolites of HHC in authentic urine samples
were identified, and the epimer composition of the (S)- and (R)-
hydroxylated and carboxylic acid metabolites in these samples were

chromatographically identified.

FIGURE 1 Chemical structures with carbon
numbers of semi-synthetic cannabinoids analysed
in this study: HHC, HHC-O, HHCP and HHCP-O.
* indicates the position of the chiral centre for the
main (9R) and (9S) epimers.
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2 | METHODS

21 | Materials

The semi-synthetic cannabinoids (9R)- and (9S)-HHC, (9R)-HHCP,
(9R)-HHC-O, (9R)-HHCP-O, 11-hydroxy-(9R)- and 11-hydroxy-(9S)-
HHC, (8R)- and (8S)-hydroxy-(9R)-HHC, (8R)- and (8S)-hydroxy-(9S)-
HHC and 11-carboxy-(9R)- and 11-carboxy-(9S)-HHC (purity 298%)
were purchased from Cayman Chemicals (Ann Arbor, MI, USA). The
5'OH-HHC reference standard was synthesised in-house, and details
of the synthesis and characterisation data can be found in the Sup-
porting Information. Acetonitrile (LC-MS grade), formic acid, metha-
nol (LC-MS grade) and the reagents for the hepatocyte incubations,
Williams E medium, L-glutamine and HEPES buffer were obtained
from Thermo Fisher Scientific (Gothenburg, Sweden). Ethanol was
from Kemetyl AB (Jordbro, Sweden). Cryopreserved primary human
hepatocytes using the 20-donor pool and thawing medium
(InVitroGro HT) were purchased from Bioreclamation IVT (Brussels,
Belgium).

The internal standard solution for the urine samples (0.4 pg/mL
each of 11-nor-9-carboxy-A’-THC-D9, A’-THC-D3, 11-hydroxy-A®-
THC-DS3, cannabidiol-D3 and A9—tetrahydrocannabinolic acid A-D3)
was prepared from reference material obtained from Cerilliant (Round
Rock, TX, USA). Urine sample preparation used high-purity water
made on site using a MilliQ Gradient production unit (Millipore,
Billerica, MA, USA). Finden B-One B-glucuronidase was purchased

from Kura Biotech, Puerto Varas, Chile.

2.2 | Hepatocyte incubations

Hepatocyte incubations and metabolite identification studies were

d?20 with slight modifications. In

performed as previously describe
short, the 9R epimers of the cannabinoids were diluted to a working
concentration of 10 uM in Williams E medium, supplemented with
HEPES buffer and L-glutamine. Pooled human hepatocytes (HHeps)
were thawed to 37°C and added to 48 mL of InVitroGro HT medium.
This solution was centrifuged at 100 x g for 5 min at room
temperature, following which the supernatant was removed, and the
pellet re-suspended in 50 mL of supplemented Williams E
medium. The re-suspended pellet was centrifuged at 100 x g for
5 min at room temperature, the supernatant removed and the final
pellet was re-suspended in Williams E medium with a cell concentra-
tion of 2 x 10° cells/mL.

The HHeps were then incubated in an IncuLine® IL-10 digital
incubator (VWR, Stockholm, Sweden) with the drug solutions (at a
final concentration of 5 uM) in duplicates for 1, 3 and 5 h at 37°C.
One hundred microlitres of ice-cold acetonitrile was added to stop
the reactions. The samples were centrifuged at 1100 x g for 15 min
at 4°C, and the supernatants were transferred to the injection plate
for LC-QToF-MS analysis. Degradation controls (drug without HHeps)
and negative controls (HHeps without drug) were also incubated
for 5 h.

2.3 | Authentic urine samples

Cases sent to the National Board of Forensic Medicine between
January and May 2023 were included in agreement with ethical
approval from the Swedish Ethical Review Authority (2018/186:31).
Urine samples were selected from cases that screened positive for
cannabis in blood using an enzyme-linked immunosorbent assay
(ELISA) but confirmed negative for THC, 11-OH-THC and
11-carboxy-THC and positive for HHC in blood.2*

Urine samples were prepared as both non-hydrolysed and hydro-
lysed. The non-hydrolysed urine samples were prepared by combining
50 pL urine with 50 pL MilliQ water, 25 uL methanol and 25 uL inter-
nal standard in methanol (corresponding to 200 ng/mL of each com-
pound). The hydrolysed urine samples were prepared by mixing 50 pL
urine with 50 pL Kura B-One B-glucuronidase (room temperature) and
incubating at room temperature for 2 h. Then, 25 uL methanol
and 25 pL internal standard in methanol were added. Negative non-
hydrolysed and hydrolysed urine samples and a mixture of B-One
B-glucuronidase, MilliQ water and methanol were analysed as nega-
tive controls.

2.4 | Instrumental analysis

The analytical workflow was based on an established standardised
protocol*??° to ensure comparability between substances and runs.
Further optimisation with regards to collision energy, gradient and
retention times were established using reference standards of the
substances prior to the analysis. Optimisation was performed with
the goal of producing molecular fragments of appropriate sizes
(approximately 80-350 m/z) and to ensure the parent compound
eluted between 10 and 13 min. As the resulting metabolites are gen-
erally more polar in nature than the parent, they usually elute prior to
the parent compound. Due to the racemic composition of the sub-
stances in the urine samples, the analysis was also performed using
methanol as a mobile phase to achieve a greater separation of the
hydroxy and carboxy epimers.

The HHeps incubated and urine samples were analysed with a
LC-QToF-MS system comprised of a 1290 Infinity UHPLC system
(Agilent Technologies) coupled to a 6550 iFunnel QToF MS (Agilent
Technologies) with a Dual Agilent Jet Stream electrospray ionisation
source. Separation was achieved by injecting 10 pL of the sample
onto an Acquity HSS T3 column (150 mm x 2.1 mm, 1.8 um; Waters,
Sollentuna, Sweden) fitted with an Acquity VanGuard precolumn
(Waters).

Mobile phase (A) consisted of water and (B) of acetonitrile both
with the addition of 0.1% formic acid. For separation, the flow rate
was 0.5 mL/min and the following gradient used: 10% B (0-0.6 min);
10% to 50% B (0.6-2 min); 50% to 90% B (2-13 min); 90% to 95% B
(13-15 min); 95% B (15-18 min); 95% to 10% B (18-18.1 min); 10%
B (18.1-19 min). The column temperature was 60°C. MS data were
acquired using positive ionisation and an auto MS/MS acquisition

with the following settings: scan range 100-950 m/z (MS) and
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(Continued)

TABLE 1

Mass error
(ppm)

#2 peak area (x10°)

#1 peak area (x10°)

Accurate mass

Mean RT

(min)

Met

Major fragment ions

3h
152

1h 3h 5h 1h
46 129 33

Max

Min

[M + HI* (m/2)
375.2545

Formula

Biotransformation
Dehyd + diOH

163.0754, 221.1536, 235.1692,
329.2475

288 267

6.29

2.39

9.27

C23H3404

P3

144 132 186 163 184 221.1536, 247.1693, 287.2006,
361.1274

3.09 6.99 77

537.3084

7.07

Ca9H4409

MonoOH + GLUC

P1g

76 112 12 50 149 121.1012, 233.1172, 275.1278,
355.2268

19

—0.04 6.68

567.2823

3.58

C29H42011

Dehyd + triOH + GLUC

P4

237.1485,251.1617, 303.1955

221.1536, 345.2788

75

42

19
38

108
10
600

60
14
447

14

7.71
2.14
3.24

246
-3.07

553.3036
387.2894
537.3070

4.86
15.48

C29H44010
C25H3g03

DiOH + GLUC
(9R)-HHCP-O

P2y

29

221.1536, 287.2006, 361.2737

567

404

58

61

0.30

6.44

Co9H4409

Acetate loss + monoOH

+ GLUC

PO1

177.0910, 219.1380, 237.1485

221.1536, 345.2788

334
155

197
92

27

88

332
88

189
84

18
38

2.74
5.01

-3.40

—0.42

553.3013
345.2795

3.76
13.56

C29H44010
C23H3602

Acetate loss + diOH + GLUC
Acetate loss ((9R)-HHCP)

PO2
PO3

Note: Metabolites are ordered from most to least abundant across all incubations.

Abbreviation: n.d., not detected.

50-950 m/z (MS/MS); precursor intensity threshold of 5000 counts;
precursor number per cycle, 5; fragmentor voltage, 380 V; CE, 3 eV at
0 m/z ramped up by 8 eV per 100 m/z; gas temperature, 150°C; gas
flow, 18 L/min; nebuliser gas pressure, 345 kPa; sheath gas tempera-
ture, 375°C; and sheath gas flow, 11 L/min.

Hydrolysed urine samples were also analysed using mobile phases
(A) water and (B) methanol, both supplemented with 0.1% formic acid.
A longer gradient was used with a total run time of 26 min and the
following gradient: 10% B (0-0.6 min); 10% to 50% B (0.6-2 min);
50% to 90% B (2-20 min); 90% to 95% B (20-23 min); 95% B (23-
25 min); 95% to 10% B (25-25.1 min); 10% B (25.1-26 min). All other

instrumental parameters were the same as described above.

2.5 | Data and statistical analysis

The data and statistical analysis comply with the recommendations on
experimental design and analysis in pharmacology.?? Agilent Mas-
sHunter Qualitative Analysis software (version B.07.00) was used for
data analysis. The criteria for metabolite identification has been
described previously,23 but in brief, the data were searched for all the
molecular formulas corresponding to potential modification of
the parent compound by known biotransformations and any combina-
tions thereof (up to three modifications). Each potential metabolite
identification required mass errors <5 ppm for protonated molecules
(values >5 ppm accepted for saturated or very small peaks, where the
mass accuracy could deviate), a consistent isotopic pattern, a product
ion spectrum consistent with the proposed structure and related to
the parent compound, a retention time plausible for the proposed
structure and the absence of identical peaks with the same mass spec-
trum in negative and degradation controls.

For the HHeps incubations, the total peak area for each metabo-
lite was calculated by summing the peak areas for both replicates at
all incubation times, which were then summed to calculate the total
peak area for each parent compound. The total peak area of the par-
ent compounds was not included in these calculations. For the urine
samples, the total peak area for each metabolite was calculated by
summing the peak areas for all samples, which were then summed to
calculate the total peak area for all urine samples where HHC and/or
its metabolites were identified. The total peak area of the parent com-
pounds were included in these calculations. The percentage total peak
areas were calculated using these values for different metabolites or

biotransformations.

3 | RESULTS AND DISCUSSION

3.1 | Hepatocyte incubations

Following incubation with HHeps, eight metabolites were identified
for (9R)-HHC, eight for (9R)-HHC-O, six for (9R)-HHCP and three for
(9R)-HHCP-O. The identified metabolites are listed in Table 1. The
metabolites are numbered according to their total peak area, from
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highest to lowest. Proposed structures of the metabolites are orga-
nised in suggested metabolic pathways in Figures 2 and 3. The mass
spectra and proposed fragmentation patterns of the parent com-
pounds and all metabolites can be found in the Supporting
Information.

It should be noted that for (?R)-HHC and (9R)-HHCP, there are
some large differences in peak areas between replicates for the parent
and some metabolites. Given that the addition of an internal standard
did not improve the stability, this variation is likely due to experimen-
tal variability, such as the saturation effect in the LC-QToF-MS detec-
tor, or the high lipophilicity of the compound, which may have led to
some of the compound sticking to pipette tips or plastic incubation
plates.

For the acetate analogues HHC-O and HHCP-O, all metabolites
had acetate loss, resulting in similar metabolites with the same relative
abundance as their non-acetate analogues HHC and HHCP, respec-
tively. Therefore, the metabolites of HHC-O and HHCP-O will be dis-
cussed with the HHC and HHCP metabolites. As expected, this
indicates that HHC-O and HHCP-O were first rapidly metabolised to
HHC (HO4) and HHCP (PO3), respectively. Therefore, the use of
HHC-O and HHCP-O is unlikely to be differentiated from that
of HHC and HHCP, respectively, in biological samples, particularly

urine. This is also likely to be true for other recently emerged acetate

/ P1,, PO1
HO *GLUC HO,
X X

(9R)-HHCP ) OH
PO3 —

(9R)-HHCP-O

analogues of other phytocannabinoids and semi-synthetic cannabi-
noids, including THC acetates and CBD di-acetate.*%3! This may be
problematic in jurisdictions where the acetate analogues are not con-
trolled. In the future, authentic urine and other biological samples
from people who have used phytocannabinoids and semi-synthetic
cannabinoids should be examined in comparison with that of their

acetate analogues to determine if their use can be differentiated.

32 | (9R)-HHC

In QToF-MS analysis, (9R)-HHC (m/z 317.2474) was fragmented into
three major product ions: m/z 81.0699, representing the cyclohexyl
ring; m/z 193.1223, representing the aromatic ring and pentyl side
chain; and m/z 231.1380, representing the three-ring core. The
observed fragment ions were used as the basis for elucidating
the structures of the metabolites.

Following incubation with HHeps, eight metabolites were identi-
fied for (9R)-HHC and (9R)-HHC-O. The metabolites eluted between
3.21 and 7.33 min with the parent drug eluting at 11.90 min for
(9R)-HHC and 14.00 min for (9R)-HHC-O (see Table 1). The observed
biotransformations included monohydroxylations (monoOH), dihy-

droxylations (diOH), dehydrogenation (dehyd) in combination with

FIGURE 2 Proposed metabolic pathways of
HHC and HHC-O following duplicate 1,3 and 5 h
incubations with HHeps and analysis of authentic
urine samples for HHC. Markush bonds represent
the probable location of the group. * indicates the
position of the chiral centre for the main (9R) and
(95) epimers.

P2,, PO2
ALC

OH

FIGURE 3 Proposed metabolic
pathways of (9R)-HHCP and (9R)-
HHCP-O following duplicate 1, 3and 5 h
incubations with HHeps. Markush bonds
represent the probable location of the
group.
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diOH (ketone or carboxylic acid formation) and glucuronidation
(GLUC). All metabolites were glucuronidated except the metabolite
formed from combined dehydrogenation and diOH (H2; HO2). The
glucuronidations were characterised by the addition of m/z 176 to the
overall mass of the metabolites. All modifications occurred at either
the cyclohexyl ring or pentyl side chain, where all identified metabo-
lites had a biotransformation at the cyclohexyl ring and 37.5% of
metabolites had a biotransformation at the pentyl side chain.

The two most abundant metabolites were produced via monoOH
on the cyclohexyl ring and glucuronidation (H1ag; HO1ag). These
metabolites were characterised by the addition of m/z 16 to the par-
ent, which is consistent with the addition of a hydroxy group. The
absence of modifications to the fragment ions of the parent demon-
strates the hydroxylations occurred on the cyclohexyl ring, although
the exact locations of the hydroxy groups could not be determined as
indicated by the Markush bonds in Figure 2.

Apart from glucuronidation, diOH was the most common bio-
transformation (H2-H4; HO2, HO3, HO5). The three metabolites
with diOH combined with glucuronidation (H3a.c; HO3a.c) were
found to have one hydroxy group added to the pentyl side chain and
one added to the cyclohexyl ring. This was characterised by the addi-
tion of m/z 32 to the overall mass, consistent with the addition of two
hydroxyl groups, and the presence of a fragment ion at m/z 209.1172,
which indicates an addition of m/z 16, consistent with one hydroxy
group, to the aromatic ring and pentyl side chain mass fragment of the
parent (m/z 193.1223) with no further modifications. The remaining
two metabolites with diOH were combined with dehydrogenation
(H2 and H4; HO2 and HO5), representing the formation of a carbox-

ylic acid on the cyclohexyl ring.

3.3 | (9R)-HHCP
(9R)-HHCP (m/z 345.2792) was fragmented into three major product
ions: m/z 81.0699, representing the cyclohexyl ring; m/z 123.0441,
representing the aromatic ring; and m/z 221.1536, representing the
aromatic ring and heptyl side chain. The observed fragment ions were
used as the basis for elucidating the structures of the metabolites.

Following incubation with HHeps, six metabolites were identified
for (9R)-HHCP. The metabolites eluted between 3.58 and 9.27 min
with the parent drug eluting at 13.58 min (see Table 1). The observed
biotransformations included monoOH, diOH, dehydrogenation in
combination with diOH (ketone or carboxylic acid formation), dehy-
drogenation in combination with trihydroxylation (triOH) and glucuro-
nidation. Similar to HHC, all metabolites were glucuronidated, except
the metabolite formed from combined dehydrogenation and diOH
(P3). All modifications occurred at either the cyclohexyl ring or heptyl
side chain, where all identified metabolites had a biotransformation at
the cyclohexyl ring and half had a biotransformation at the heptyl side
chain.

The most abundant metabolite was formed from monoOH and
glucuronidation (P1,; PO1). The exact location of the monoOH on

metabolites P15 and PO1 could not be determined but given no

modifications were observed on the major mass fragments of the par-
ent, it was determined the hydroxy group was added to the cyclohexyl
ring or isopropyl (carbons 12 or 13 on Figure 1).

Apart from glucuronidation, diOH was the most common bio-
transformation (P25 and P3; PO2). Two of the metabolites with
diOH (P2a.g; PO2) had one hydroxy group added to the heptyl side
chain and the other to the cyclohexyl ring or isopropyl. The other
metabolite with diOH was combined with dehydrogenation (P3),
representing the formation of a carboxylic acid on the cyclohexyl ring.
The metabolite with triOH and dehydrogenation (P4) had a carboxylic
acid on the cyclohexyl ring and a hydroxy group on the heptyl side
chain.

Because HHC and HHCP produced similar metabolites, they likely
follow a similar metabolic pathway. All modifications of HHC and
HHCP occurred at either the cyclohexyl ring or pentyl side chain or
isopropyl for HHCP; however, while all identified metabolites of both
HHC and HHCP had a biotransformation at the cyclohexyl ring, HHCP
showed greater biotransformation on the side chain, where half of its
metabolites had a hydroxy group on the side chain in comparison to
37.5% of metabolites of HHC. This is likely due to the longer alkyl side
chain of HHCP (heptyl) than HHC (pentyl). This relationship has been
previously observed with phytocannabinoids, where tetrahydrocanna-
binolic acid (THCA) had greater metabolism on its pentyl side chain
than the propyl side chain of tetrahydrocannabivarin (THCV).2” This
has also been identified in structure-metabolism relationships of syn-
thetic cannabinoid receptor agonists (SCRAs), where greater metabo-
lism on the alkyl chain tails has been observed for SCRAs with longer

alkyl chains.?®

3.4 | HHC authentic urine samples

The analysis of the non-hydrolysed and hydrolysed urine samples in
acetonitrile resulted in the identification of 21 and 18 metabolites for
HHC, respectively. The glucuronidated parent compound HHC
(N1a.g) was identified in the non-hydrolysed samples (5.9% of total
peak area) with both epimers being present, although it was not possi-
ble to determine which of the metabolites (N1 or N1g) corresponded
to each epimer. The parent compounds (9R)- and (95)-HHC were iden-
tified in the hydrolysed samples and confirmed with reference stan-
dards, where the (95) epimer was found to be more abundant (1.8% of
total peak area) than the (9R) epimer (1.3% of total peak area). The
metabolites identified eluted between 3.20 and 7.63 min in non-
hydrolysed urine samples and 4.00 and 9.51 min in the hydrolysed
urine samples, with the parent drug HHC eluting at 11.69 (9S) and
11.79 min (9R). The identified metabolites are listed in Table 2 for the
non-hydrolysed and Table 3 for the hydrolysed urine samples. Follow-
ing the parent compounds, or glucuronidated parent compounds in
the case of the non-hydrolysed urine samples, metabolites are num-
bered according to their prevalence in the urine samples, from the
most to least prevalent, followed by abundance based on total peak
areas across all samples. No HHC or metabolites were detected in

Urine Sample 7 despite the corresponding blood sample containing
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HHC, so this sample is not included in Table 2 or 3. The proposed
metabolic pathways for HHC from analysis of non-hydrolysed and
hydrolysed urine samples are shown in Figure 2.

Apart from glucuronidation, the same biotransformations were
found in both the non-hydrolysed and hydrolysed urine samples,
which consisted of monoOH, diOH and diOH in combination with
dehydrogenation (ketone or carboxylic acid formation). The metabo-
lites of HHC identified in authentic urine samples were also similar to
the metabolites of HHC identified after incubation with HHeps,
although there were more than double the number of metabolites in
the urine samples. This is likely due to only the (9R)-HHC being incu-
bated with HHeps in this study, whereas the urine samples contained
metabolites of both epimers, as shown by the identification of both
epimers of the parent compound (glucuronidated in non-hydrolysed)
and multiple stereoisomers of metabolites, such as three stereoiso-
mers of 8-OH-HHC, which were not identified in the samples from
HHeps incubations. This is in agreement with previous studies that
found HHC-containing products contain a mixture of both the (9R)
and (95) epimers.1&10-12

Similar to the metabolites from incubation with HHeps, 99.3% of
hydroxylated metabolites were glucuronidated in the non-hydrolysed
urine samples. Metabolites with monoOH in combination with glucur-
onidation were the most prevalent, accounting for 46.4% of the total
peak area of the metabolites. A metabolite with a monoOH on the
pentyl side chain (N2; 13.6% of total peak area) and a metabolite with
a monoOH on the cyclohexyl ring, 8-OH-HHC (N34; 6.7% of total
peak area) were the only metabolites found in all 16 urine samples.
Two 11-OH-HHC with glucuronide metabolites were the next most
prevalent metabolites, found in 15 (N3g; 12.5% of total peak area)
and 14 urine samples (N3¢; 8.1% of total peak area). These are likely
the (9R) and (9S) epimers of 11-OH-HHC, although it was not possible
to determine which metabolite corresponded to which epimer. There
were also two additional metabolites with a monoOH that were less
prevalent and abundant, an 8-OH-HHC with glucuronide metabolite
(N3p; 5.5% of total peak area) and a non-glucuronidated 11-OH-HHC
metabolite (N10; 0.3% of total peak area).

The remaining 13 metabolites had a diOH, where 83.5% (based

on total peak area) were glucuronidated. Three of these metabolites
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had only diOH (N84.c), three had diOH with a glucuronide (N4a.c),
three had diOH in combination with dehydrogenation (N7 g, N9) and
four had diOH in combination with dehydrogenation and glucuronida-
tion (N54.c, N6). Two of the metabolites with diOH and dehydrogena-
tion were confirmed by comparison with reference standards to be
the (9R)- and (9S)-carboxylic acid metabolites (N7, and N7g, respec-
tively). The remaining metabolites with diOH combined with dehydro-
genation could not be confirmed but are presumed to be ketone
formations.

Extensive glucuronidation was found in the non-hydrolysed urine
samples and following HHeps incubation, which is similar to phyto-
cannabinoids like THC.?*"2% In addition, Schirmer et al. (2023) found
extensive glucuronidation of HHC metabolites in a urine sample col-
lected 2 h after ingestion of HHC.'®> Unfortunately, glucuronidated
parent compounds and metabolites are not available as certified refer-
ence standards. Because confirmation of identifications require com-
parison of the samples with certified reference standards, hydrolysing
toxicological samples where use of these or other semi-synthetic can-
nabinoids is suspected is necessary.

The urine samples in this study were hydrolysed and an overlaid
chromatogram from hydrolysed Urine Sample 17 is provided in
Figure 4 to demonstrate the relative abundance and retention times
of the identified metabolites and parent compound. No glucuroni-
dated metabolites were identified in the hydrolysed urine samples,
indicating complete hydrolysis. However, complete cleavage of glucu-
ronides by p-glucuronidase was only achieved after using longer incu-
bation times (2 h) than in the standard manufacturer recommended
method of 15 min (data from standard incubation time not shown).
The need for longer incubation times was also observed by Schirmer
et al. (2023) where after hydrolysis of the urine sample, half of the
metabolites (4 of 8) were still glucuronidated.'®

The parent compound, (9R)- and (9S)-HHC, only accounted for
3.1% of the total peak area, demonstrating the extensive metabolism
of HHC. Similar to the non-hydrolysed samples, metabolites with a
monoOH were the most prevalent and abundant in the hydrolysed
samples, accounting for 38.1% of the total peak area of identified
metabolites. The 11-OH-HHC metabolite (M14; 19.4% of total peak

area) and two metabolites with a monoOH on the pentyl side chain

(98)-HHC
(9R)-HHC
M1 ’f(\‘ VA\

4 42 44 46 48 5 52 54 56 58 6 62 64 66 68 7 72 74T,7s( 7)3 8 82 84 86 88 O 92 94 96 98 10 102 104 106 108 11 112 114 116 118 12 122
i (min)

FIGURE 4 The overlaid chromatogram of metabolites of HHC found in Urine Sample 17, demonstrating the abundance and retention times

of all the metabolites.
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FIGURE 5 The overlaid chromatogram and chemical structures of the epimers of HHC, 8-OH-HHC, 11-OH-HHC and carboxy-OH-HHC
from running Urine Sample 17 in methanol with a longer gradient. *This is presumed to be the (8S, 9R) epimer of 8-OH-HHC, although a

reference standard was not available for confirmation.

(M24 and M2g; 9.3 and 5.3% of total peak area, respectively) were
the only metabolites found in all 16 urine samples. There was a third
metabolite with a monoOH on the pentyl side chain (M2¢), but it was
less abundant (1.0% of total peak area). In addition, although the
8-OH-HHC with glucuronide metabolite was the most prevalent and
abundant in the non-hydrolysed urine samples, the three 8-OH-HHC
metabolites identified in the hydrolysed urine samples (M1g, M1p and
M1¢) only accounted for 2.17% of the total peak area. There was also
one additional monoOH metabolite (M1¢) where the exact location of
the hydroxy group could not be determined.

To confirm the locations and epimeric structure of the monoOH,
two hydrolysed urine samples (16 and 17) were analysed alongside
the reference standards using methanol and a longer gradient on the
LC-QToF-MS to clarify the conformation. An overlaid chromatogram
of Urine Sample 17 from the analysis with methanol is provided in
Figure 5. As shown in Figure 5, both the (9R)- and (95)-11-OH-HHC
were confirmed to be present in the urine samples when run in meth-
anol with a longer gradient, which improved separation of the epi-
mers, whereas due to co-elution of the epimers, as can be seen in
Figure 4, only one 11-OH-HHC metabolite (M1,) was identified when
analysed using acetonitrile. Therefore, within the hydrolysed urine
samples, the most prevalent and abundant metabolite for HHC was
confirmed to be 11-OH-HHC (M1,). These results are consistent with
prior studies of HHC metabolism. Manier et al. (2023) found a metab-
olite with monoOH in human plasma and following pooled human
liver S9 fraction incubation of HHC, although the exact location of the
monoOH was not confirmed.'® In addition, Schirmer et al. (2023)
identified both (9R)- and (95)-11-OH-HHC as primary metabolites in
urine® and Kobidze et al. (2024) identified (9R)-11-OH-HHC in
urine.’” It is also consistent with metabolism results of THC and CBD,
where 11-OH-THC and 11-OH-CBD, respectively, are their principal
metabolites. 11-OH-THC is an active metabolite,?*?¢%? so future
work should examine if 11-OH-HHC also displays activity at the can-
nabinoid receptors.

Three stereoisomers of 8-OH-HHC, (8R, 95), (8S, 9S) and (8R, 9R),

were also confirmed to be present in varying amounts in the urine

samples. (85)-OH-(9R)-HHC is also believed to present, although the
reference standard was not available for confirmation. The (8R, 9R)
and presumed (8S, 9R) epimers were found to be the most abundant
of the 8-OH-HHC epimers. In comparison, Schirmer et al. (2023) only
identified the (8R,9R)-8-OH-HHC epimer,*> and Kobidze et al. (2023)
identified no 8-OH-HHC metabolites but found 9a-OH-HHC.Y” As
can be seen in Figure 5, the epimers of the 8-OH-HHC metabolites
predominantly correspond to (9S)-HHC, while the epimers of the
11-OH-HHC metabolites predominantly correspond to (9R)-HHC. It
should be noted that similar to the 11-OH-HHC epimers, the 8-OH-
HHC epimers could only be confirmed when run in methanol with a
longer gradient. Further research might be conducted to improve the
separation of the epimers, such as by using a chiral column and pro-
vide an opportunity for quantitative measurement of the epimers
when all reference standards become available.

5'OH-HHC was also confirmed to be the most abundant metabo-
lite with a monoOH on the pentyl side chain (M2,) following compari-
son with an in-house synthesised reference standard. Unfortunately,
reference standards of the other isomers were not available for com-
parison, so the locations on the side chain of the hydroxylations for
the other metabolites (M2 and M,C) could not be confirmed. In com-
parison, Schirmer et al. (2023) identified one metabolite with a
monoOH on the pentyl side chain, which they tentatively identified to
be at carbon four (4'OH-HHC).*

There were five metabolites with diOH (M44_g) in the hydrolysed
urine samples, which accounted for 31.7% of the total peak area, but
the exact locations of the hydroxy groups were unable to be deter-
mined. There were also five metabolites with diOH in combination
with dehydrogenation (M3a.c and M54.g). Two of these metabolites
were confirmed by comparison with reference standards to be the
(9R)- and (9S)-carboxylic acid metabolites (M55 and Mb5g, respec-
tively), where the (9R) epimer was found to be more abundant (2.9%
of total peak area) than the (9S) epimer (0.7% of total peak area). The
remaining metabolites with diOH combined with dehydrogenation
(M3a.c; 23.52% of total peak area) could not be confirmed but are
presumed to be ketone formations.
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The (R)- and (S)-carboxylic acid metabolites of HHC (M5, and
M5g, respectively) were only found in about half of the urine samples
in this study (10 and eight urine samples, respectively) with relatively
low abundance, whereas one other study found (9R)- and (9S)-
11-COOH-HHC to be the most abundant metabolites in two urine
samples.’” Given the carboxylic acid metabolite of THC and CBD are
their primary metabolites,?*2¢ this indicates HHC may follow some
of the same metabolic pathways as phytocannabinoids but that there
are also some important differences. It should also be noted that none
of the metabolites of HHC or HHCP were the same as those of THC
or CBD, so the use of these semi-synthetic cannabinoids, which are
currently not controlled in many jurisdictions, can be differentiated
from the use of controlled phytocannabinoids.

4 | CONCLUSIONS

In this study, glucuronidation, hydroxylation and dehydrogenation
were the only biotransformations identified for HHC and HHCP fol-
lowing incubation with HHeps and in authentic urine samples for
HHC. HHC and HHCP were found to be extensively glucuroni-
dated, where 99.3% of hydroxylated metabolites were glucuroni-
dated in the non-hydrolysed urine samples. Metabolites with a
monoOH were the most prevalent and abundant, accounting for
38.1% of the total peak area of identified metabolites in the hydro-
lysed urine samples. The 11-OH-HHC metabolite (M1,), 5OH-HHC
(M2,) and another metabolite with a monoOH on the pentyl side
chain (M2g) were the only metabolites found in all 16 hydrolysed
urine samples.

Given that 11-OH-HHC (M1,), 5OH-HHC (M2,) and another
metabolite with a monoOH on the pentyl side chain (M2g) were the
only metabolites detected in all 16 urine samples where metabolites
were identified, these metabolites along with the parent drug are sug-
gested as suitable urinary markers to identify consumption of HHC
and HHC-O. Following incubation with HHeps, the metabolites with
monoOH + GLUC (P1,) and diOH + GLUC (P2,) were found to be
the most abundant for HHCP and HHCP-O; therefore, these metabo-
lites or their hydrolysed equivalents are suggested as suitable urinary
markers to identify consumption of HHCP and HHCP-O. It is recom-
mended that clinical and forensic toxicologists add these metabolites
and characteristic ions to their targeted and semi-targeted analytical
methods.
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